A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis

Karlik B., Tokhi M., Alci M.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol.50, no.11, pp.1255-1261, 2003 (Journal Indexed in SCI) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 50 Issue: 11
  • Publication Date: 2003
  • Doi Number: 10.1109/tbme.2003.818469
  • Page Numbers: pp.1255-1261


Accurate and computationally efficient means of classifying surface myoelectric signals has been the subject of considerable research effort, in recent years. The aim of this paper is to classify myoelectric signals using new fuzzy clustering neural network (NN) architectures to control multifunction prostheses. This paper presents a comparative study of the classification accuracy of myoelectric signals using multilayered perceptron NN using back-propagation, conic section function NN, and new fuzzy clustering NNs (FCNNs). The myoelectric signals considered are used in classifying six upper-limb movements: elbow flexion, elbow extension, Wrist pronation and wrist supination, grasp, and resting. The results suggest that FCNN can generalize better than other NN algorithms and help the user learn, better and faster. This method has the potential of being very efficient in real-time applications.