Probiotic potential and biochemical and technological properties of Lactococcus lactis ssp. lactis strains isolated from raw milk and kefir grains

Yerlikaya O.

JOURNAL OF DAIRY SCIENCE, vol.102, pp.124-134, 2019 (Journal Indexed in SCI) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 102
  • Publication Date: 2019
  • Doi Number: 10.3168/jds.2018-14983
  • Title of Journal : JOURNAL OF DAIRY SCIENCE
  • Page Numbers: pp.124-134


Lactococcus lactis ssp. lactis is one of the most important starter bacteria used in dairy technology and it is of great economic importance because of its use in the production of dairy products, including cheese, butter, cream, and fermented milks. Numerous studies have evaluated the biochemical and probiotic properties of lactococci; however, limited studies on the probiotic characteristics of lactococci were conducted using strains originating from raw milk and dairy products. Characterizing the probiotic properties of strains isolated from raw milk and fermented milk products is important in terms of selecting starter culture strains for the production of functional dairy products. In this study, biochemical properties (including antibiotic sensitivity, lipolytic activity, amino acid decarboxylation, antioxidant activity) and probiotic properties (including antimicrobial activity, growth in the presence of bile salts, bile salts deconjugation, and hydrophobicity) of 14 Lactococcus lactis strains isolated from raw milk and kefir grains were investigated. Strains originating from kefir grains had better characteristics in terms of antimicrobial activity and bile salt deconjugation, whereas strains from raw milk had better hydrophobicity and antioxidant activity characteristics. None of the strains were able to grow in the presence of bile salt and did not show amino acid decarboxylation or lipolytic activities. Biochemical and probiotic properties of L. lactis strains varied depending on the strain and some of these strains could be used as functional cultures depending on their properties. However, these strains did not possess all of the properties required to meet the definition of a probiotic.