COCENTRALIZING DERIVATIONS AND NILPOTENT VALUES ON LIE IDEALS


ARGAÇ N. , De Filippis V.

INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, cilt.41, ss.475-483, 2010 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 41 Konu: 3
  • Basım Tarihi: 2010
  • Doi Numarası: 10.1007/s13226-010-0029-6
  • Dergi Adı: INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS
  • Sayfa Sayıları: ss.475-483

Özet

Let R be a prime ring with charR not equal 2, L a non-central Lie ideal of R, d,g non-zero derivations of R, n >= 1 a fixed integer. We prove that if (d(x)x - xg(x))(n) = 0 for all x is an element of L, then either d = g = 0 or R satisfies the standard identity 84 and d, g are inner derivations, induced respectively by the elements a and b such that a + b is an element of Z(R).