Periodic Solutions in Shifts delta(+/-) for a Nonlinear Dynamic Equation on Time Scales


Creative Commons License

ÇETİN E., TOPAL F. S.

ABSTRACT AND APPLIED ANALYSIS, 2012 (SCI İndekslerine Giren Dergi) identifier identifier

  • Basım Tarihi: 2012
  • Doi Numarası: 10.1155/2012/707319
  • Dergi Adı: ABSTRACT AND APPLIED ANALYSIS

Özet

Let T subset of R be a periodic time scale in shifts delta(+/-). We use a fixed point theorem due to Krasnosel'ski(sic) to show that nonlinear delay in dynamic equations of the form x(Delta)(t) = -a(t)x(sigma)(t) + b(t)x(Delta)(delta(-)(k, t))delta(Delta)(-)(k, t) + q(t, x(t), x(delta_(k, t)), t is an element of T, has a periodic solution in shifts delta(+/-). We extend and unify periodic differential, difference, h-difference, and q-difference equations and more by a new periodicity concept on time scales.