GENERALIZED SKEW DERIVATIONS ON MULTILINEAR POLYNOMIALS IN RIGHT IDEALS OF PRIME RINGS


ALBAŞ E. , ARGAÇ N. , DE FILIPPIS V., DEMİR Ç.

HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, cilt.43, ss.69-83, 2014 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 43 Konu: 1
  • Basım Tarihi: 2014
  • Dergi Adı: HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
  • Sayfa Sayıları: ss.69-83

Özet

Let R be a prime ring, f(x(1),...,x(n)) a multilinear polynomial over C in n noncommuting indeterminates, I a nonzero right ideal of R, and F : R -> R be a nonzero generalized skew derivation of R. Suppose that F(f(r(1),...,r(n)))f(r(1),...,r(n)) is an element of C, for all r(1),...,r(n) is an element of I. If f(x(1),...,x(n)) is not central valued on R, then either char(R) = 2 and R satisfies s(4) or one of the following holds: