Optimal inequalities for Riemannian maps and Riemannian submersions involving Casorati curvatures


Lee C. W. , Lee J. W. , ŞAHİN B. , Vilcu G.

ANNALI DI MATEMATICA PURA ED APPLICATA, 2020 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası:
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1007/s10231-020-01037-7
  • Dergi Adı: ANNALI DI MATEMATICA PURA ED APPLICATA

Özet

Riemannian maps are generalizations of well-known notions of isometric immersions and Riemannian submersions. Most optimal inequalities on submanifolds in various ambient spaces are driven from isometric immersions. The main aim of this paper is to obtain optimal inequalities for Riemannian maps to space forms, as well as for Riemannian submersions from space forms, involving Casorati curvatures.