ONE-SIDED TAUBERIAN CONDITIONS FOR THE ((N)over-bar, p) SUMMABILITY OF INTEGRALS


Totur U., Okur M. A. , ÇANAK İ.

UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, cilt.80, ss.65-74, 2018 (SCI İndekslerine Giren Dergi) identifier

  • Cilt numarası: 80 Konu: 3
  • Basım Tarihi: 2018
  • Dergi Adı: UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS
  • Sayfa Sayısı: ss.65-74

Özet

Let p be a function on R+ := [0, infinity) which is integrable in Lebesgue's sense over every finite interval (0; x) for 0 < x < infinity, in symbol: p is an element of L-loc(1) (R+) such that P (x) = integral(x)(0) p(t)dt not equal 0 for each x > 0, P (0) = 0 and P (x) -> infinity as x -> infinity. For a real-valued function f is an element of L-loc(1) (R+), we set s (x) := integral(0)(x) f (t)dt and sigma((1))(p) (x) := 1/P(x) integral(x)(0) s (t) p (t)dt; x > 0, provided that P (x) > 0.