Properties of AlSi9Cu3 metal matrix micro and nano composites produced via stir casting


Creative Commons License

ÜNAL T. G. , DİLER E. A.

OPEN CHEMISTRY, vol.16, no.1, pp.726-731, 2018 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 16 Issue: 1
  • Publication Date: 2018
  • Doi Number: 10.1515/chem-2018-0079
  • Title of Journal : OPEN CHEMISTRY
  • Page Numbers: pp.726-731
  • Keywords: Metal matrix composites, Nanocomposites, Stir Casting, Microstructure, Mechanical Properties, NANOCOMPOSITES

Abstract

The effects of micro and nano sized reinforcement particles on microstructure and mechanical properties of aluminium alloy-based metal matrix composites were investigated in this study. AlSi9Cu3 alloy was reinforced with micro and nano sized ceramic reinforcement particles at different weight fractions by using a stir casting method. The mechanical tests (hardness, three point bending) were performed to determine the mechanical properties of AlSi9Cu3 alloy-based microcomposites (AMMCs) and nanocomposites (AMMNCs). The experimental results have shown that the size and weight fraction of reinforcement particles have a strong influence on the microstructure and the mechanical properties of AlSi9Cu3 alloy-based microcomposites and nanocomposites. The relative densities of all AMMC and AMMNC samples are lower than unreinforced AlSi9Cu3 alloy due to porosity formation with the increase of weight fraction of reinforcement particles. As weight fraction increases, hardness values of AMMCs and AMMNCs increase. Maximum flexural strength can be obtained at 3.5wt.% for the AMMC sample with micro-sized Al2O3 particles and at 2wt.% for the AMMNC sample with nano-sized Al2O3 particles. After the weight fractions exceed these values, flexural strengths of both AMMCs and AMMNCs decrease due to clustering of Al2O3 particles.